ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Edoardo Cavalieri d'Oro, Michael W. Golay
Nuclear Technology | Volume 179 | Number 1 | July 2012 | Pages 117-128
Technical Paper | Special Issue on Safeguards / Fuel Cycle and Management | doi.org/10.13182/NT12-A14073
Articles are hosted by Taylor and Francis Online.
Although in the United States and worldwide, the acceptance of nuclear systems has been abundantly regulated from a safety standpoint, the regulation of the nonproliferation performance of these systems still needs to be formalized. For nonproliferation, there are no regulations, formal license processes, or protocols to follow similar to the ones used by the nuclear sector to quantify and address safety risks. Consensus on how to address nonproliferation standards has not been achieved yet by regulators, designers, and policy makers, despite the urgent need to construct a clear framework to understand and formalize nonproliferation requirements of future and current nuclear systems.Appropriate tools and policies are needed to systematically quantify the standard of proliferation performance of nuclear energy systems, and to define the boundaries within which proliferation metrics can be considered acceptable.This paper tackles these issues by setting up a framework where risk, specifically the risk to covertly acquire special nuclear materials, can be used to evaluate the antiproliferation performance of nuclear systems. Specifically, it presents a treatment that, built upon analogy with the nuclear safety case, incorporates all the relevant features needed to set up a risk-informed licensing process for nuclear nonproliferation. The conceived framework can be used to assist the evaluation of the different solutions proposed internationally in order to strengthen the current nonproliferation regime.