ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Brian D. Boyer, Heather H. Erpenbeck, Carolynn P. Scherer
Nuclear Technology | Volume 179 | Number 1 | July 2012 | Pages 61-69
Technical Paper | Special Issue on Safeguards / Fuel Cycle and Management | doi.org/10.13182/NT179-61
Articles are hosted by Taylor and Francis Online.
The Proliferation Resistance and Physical Protection Evaluation Methodology Working Group of the Generation IV International Forum produced a full-system case study on the Example Sodium Fast Reactor Nuclear Energy System (ESFR-NES). The ESFR-NES is a hypothetical fuel cycle complex consisting of four sodium-cooled fast reactors of medium size collocated with an on-site dry-fuel storage facility and a spent-fuel reprocessing facility based on electrochemical recycling technology. The complex recycles irradiated fuels from two feed streams, oxide fuel from off-site light water reactors and metal fuel from the on-site sodium-cooled fast reactors. Both of these streams are recycled on-site; uranium and transuranics are sent to the electrochemical reprocessing fuel cycle facility. The two streams combine and the fuel cycle facility creates new ESFR-NES metal fuel for the four on-site sodium-cooled fast reactors. The major safeguards concepts driving the safeguards analysis were timeliness goals and material quantity goals. Specifically, the recycled fuel, the in-process material in the fuel reprocessing facility, the off-site light water reactor spent fuel received at the ESFR-NES, and spent fuel from the on-site fast reactors will contain plutonium. The International Atomic Energy Agency defines the material within the ESFR-NES as "direct-use material" with a stringent timeliness goal of 3 months and a material quantity goal of 8 kg of plutonium. Furthermore, the ESFR-NES may have some intrinsic safeguards features if the plutonium and uranium are not separated during reprocessing. This facility would require major modifications to separate the plutonium from other transuranic elements in the reprocessed fuel. The technical difficulty in diverting material from the ESFR-NES is at least as strongly impacted by the adversaries' overall technical capabilities as it is by the effort required to overcome those barriers intrinsic to the nuclear fuel cycle. The intrinsic proliferation resistance of the ESFR-NES can affect how extrinsic measures in the safeguards approach for the complex will provide overall proliferation resistance.