ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yong-Sik Yang, Yang-Hyun Koo, Dae-Ho Kim, Je-Geon Bang, Young-Woo Rhee, Dong-Joo Kim, Keon-Sik Kim, Kun-Woo Song
Nuclear Technology | Volume 178 | Number 3 | June 2012 | Pages 267-279
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT12-A13593
Articles are hosted by Taylor and Francis Online.
This paper presents some of the key technologies in the area of fuel performance that Korea Atomic Energy Research Institute (KAERI) has developed for a dual-cooled annular fuel, which should be available before the annular fuel can be considered to be used in a commercial nuclear power plant. First, considering the characteristics of the annular fuel - that it has two coolant channels, outer and inner, and also two gaps between the pellet and cladding - KAERI has developed a computer code DUOS that calculates temperature, swelling, densification, and stress and strain in the annular fuel. The DUOS code was verified by comparing it with either ABAQUS or analytical solutions. The first irradiation test of sintered annular fuel pellets with different initial densities was performed in the HANARO reactor up to a pellet burnup of 10.9 MWd/kg U and then subjected to postirradiation examination. Gamma scanning along the axial direction of the irradiated fuel rods showed the geometrical integrity of the annular fuel pellets, ruling out the possibility that fragmented annular pellet cracks could move down along the axial direction of the fuel rod and hence the pellet stack length could be reduced. Macroscopy of the annular fuel pellets revealed many radial and circumferential cracks that could lead to different outer and inner gap sizes along the axial direction of the annular fuel rod, which would suggest that heat transfer to both the outer and inner coolant channels during the irradiation of annular fuel rods would depend on the axial profile of the two gaps along the axial direction. The swelling rate derived from density measurement of the annular fuel pellets with 98.0% theoretical density was 0.25 to 0.60 vol % per 10 MWd/kg U, corresponding to the one observed for solid fuel pellets irradiated at low temperature.