ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Raymond S. Troy, Robert V. Tompson, Tushar K. Ghosh, Sudarshan K. Loyalka
Nuclear Technology | Volume 178 | Number 3 | June 2012 | Pages 241-257
Technical Paper | Fission Reactors | doi.org/10.13182/NT11-48
Articles are hosted by Taylor and Francis Online.
Graphite particle generation by interpebble abrasion and by abrasion of pebbles with the containment vessel during operation of a pebble bed reactor is an issue of interest in the safety analysis of this class of very high temperature reactor. To understand particle generation, we have constructed an apparatus to generate graphite particles from preformed graphite hemispheres under rotational/spinning abrasive loading. We have initially used commercial-grade graphites in our experiments and have generated size distributions for the abraded particles, determined particle shapes, and measured the particle surface areas, pore volumes, and pore volume distributions of particles produced during abrasion of graphite surfaces under different conditions. The size distributions were studied using an Aerodynamic Particle Sizer™ and a Scanning Mobility Particle Sizer.™ Most of the particles observed were in the range from 18.1 to 600 nm in diameter. The scanning electron micrographs showed that the particles tend to be irregular in shape and porous in nature. We have also conducted Brunauer-Emmett-Teller surface area and pore volume measurements that have verified the highly porous nature of the particles. The calculated surface area and open porosity for our initial measurements of the particles from this particular grade of commercial graphite were found to be 626 m2 g-1 and 68%, respectively. In addition, the average surface roughness of fresh samples was 0.966 Ra m at the point of contact.