ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Sara Boarin, Giorgio Locatelli, Mauro Mancini, Marco E. Ricotti
Nuclear Technology | Volume 178 | Number 2 | May 2012 | Pages 218-232
Technical Paper | Small Modular Reactors / Fuel Cycle and Management | doi.org/10.13182/NT12-A13561
Articles are hosted by Taylor and Francis Online.
Nowadays interest in small- to medium-size modular reactors (SMRs) is growing in several countries, including those economically and infrastructurally developed. Such reactors are also called "deliberately small reactors" since the reduced size is exploited from the design phase to reach valuable benefits in safety, operational flexibility, and economics. A rough evaluation based only on the economies of scale could label these reactors as economically unattractive, but that approach is incomplete and misleading. An economic model (INCAS - INtegrated model for the Competitiveness Assessment of SMRs) is currently being developed by Politecnico di Milano university within an international effort on SMR competitiveness fostered by the International Atomic Energy Agency, suitable to compare the economic performance of SMRs with respect to large reactors (LRs). INCAS performs an investment project simulation and assessment of SMR and LR deployment scenarios, providing monetary indicators (e.g., internal rate of return, levelized cost of electricity, total equity employed) and nonmonetary indicators (e.g., design robustness, required spinning reserve).This paper presents the general features and purpose of the INCAS model, detailing the input required, and points out the main differences with other simulation codes. INCAS is applied to evaluate the financial attractiveness of an investment in four SMRs with respect to a single LR with the same power generation capacity installed, in different deployment scenarios. Then, a sensitivity analysis highlights the degree of elasticity of the key output parameters for the investors, with respect to the most sensitive input parameters.Given the uncertainties of the main input parameters, INCAS results are affected by uncertainties as well. However, the financial output parameters provide a general understanding on the investment economics: INCAS shows that the economy of scale is not the only cost driver, because the economies of multiples may compensate for most of the gap in the economic performance of the SMRs. The uncertainties that affect the input data and the model do not allow declaration of a straightforward and neat economic performance superiority of SMRs versus LRs, or vice versa. Nevertheless, some trends have been highlighted. In particular, in "supported" market scenarios, where overnight construction costs have the highest incidence and the market conditions are less volatile, the most suitable strategy is to pursue the economies of scale. In contrast, SMRs behave better in "merchant" scenarios, where the cost of financing is higher and financial risk is sensitive. A "modular" investing strategy with a step-by-step power block deployment process allows lower financial exposure and less capital at risk and may mitigate the impact of scenario uncertainties on a project's profitability.