ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yasushi Tsuboi, Kazuo Arie, Nobuyuki Ueda, Tony Grenci, A. M. Yacout
Nuclear Technology | Volume 178 | Number 2 | May 2012 | Pages 201-217
Technical Paper | Small Modular Reactors / Fission Reactors | doi.org/10.13182/NT10-74
Articles are hosted by Taylor and Francis Online.
The Super-Safe, Small and Simple (4S) sodium-cooled fast reactor plant incorporates innovative design features, such as a nonrefueling reactor, passive safety, low maintenance requirements, and inherent security. Major components such as the reflector drive mechanisms, the electromagnetic pumps, and the double-wall tube steam generator have been optimized for efficient and safe operation.The nonrefueling reactor concept is made possible by incorporating a 30-yr refueling interval for the reflector-controlled metallic fuel core. Sodium-cooled, metallic-fueled fast reactors have a good conversion ratio due to fast neutron usage, thus extending the core life. Passive safety is achieved with redundant residual heat removal systems that function using only natural circulation, and a metallic core with a negative reactivity coefficient. Low maintenance requirements are achieved by simplifying the design and minimizing the use of active components, and by using electromagnetic pumps, which have no moving parts. The inherent security of the nuclear materials is significantly enhanced by the nonrefueling reactor concept and the minimal maintenance requirements. In addition, the reactor building is located below ground level, providing substantial protection against an aircraft impact and thus further enhancing the security of the design.The demonstration of key components such as the electromagnetic pumps and the steam generator is part of an ongoing testing program that has already confirmed many of the 4S engineering solutions.This paper describes the current status of design and component tests for the 4S reactor.