ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Brian S. Triplett, Eric P. Loewen, Brett J. Dooies
Nuclear Technology | Volume 178 | Number 2 | May 2012 | Pages 186-200
Technical Paper | Small Modular Reactors / Fission Reactors | doi.org/10.13182/NT178-186
Articles are hosted by Taylor and Francis Online.
The Power Reactor Innovative Small Module (PRISM) designed by GE Hitachi Nuclear Energy is a small, modular, sodium-cooled fast reactor. The PRISM core is located in a pool-type containment vessel and is fueled with metallic fuel. Each PRISM produces 311 MW of electricity. The PRISM is inherently safe due to its negative power reactivity feedback, large in-vessel coolant inventory, passive heat removal systems, below-grade siting, and atmospheric reactor vessel operating pressure. In NUREG-1368, "Preapplication Safety Evaluation Report for the Power Reactor Innovative Small Module (PRISM) Liquid-Metal Reactor," the U.S. Nuclear Regulatory Commission stated that "On the basis of the review performed, the staff, with the ACRS [Advisory Committee on Reactor Safeguards] in agreement, concludes that no obvious impediments to licensing the PRISM design have been identified." PRISM is able to fission electrometallurgically recycled used nuclear fuel (UNF) from light water reactors as well as weapons-grade materials. PRISM, with the associated Nuclear Fuel Recycling Center, represents a safe, diversion resistant, commercially viable technology for recycling UNF with a small modular reactor.