ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Arkal Shenoy, John Saurwein, Malcolm Labar, Hankwon Choi, John Cosmopoulos
Nuclear Technology | Volume 178 | Number 2 | May 2012 | Pages 170-185
Technical Paper | Small Modular Reactors / Fission Reactors | doi.org/10.13182/NT12-A13558
Articles are hosted by Taylor and Francis Online.
The Next Generation Nuclear Plant (NGNP) project is being conducted by the U.S. Department of Energy (DOE) to demonstrate the technical and licensing viability of high-temperature gas-cooled reactor (HTGR) technology as a CO2 emission-free source of energy to displace the use of natural gas, petroleum, and coal for production of electricity and/or high-temperature process energy for a wide range of industrial applications. The DOE selected the HTGR as the reactor type for the NGNP project primarily because HTGRs can produce heat energy at much higher temperatures than other reactor types due to their use of ceramic, coated-particle fuel, helium coolant, and graphite as the core structural material. The DOE is considering a number of candidate HTGR designs for the NGNP demonstration plant; the DOE or a DOE-industry partnership will ultimately select the design to be licensed and constructed.The HTGR design option being advanced by General Atomics for the NGNP demonstration plant, and for follow-on commercial deployment, is the Steam Cycle Modular Helium Reactor (SC-MHR). The SC-MHR, which is the subject of this paper, uses fuel elements in the form of hexagonal blocks, which are stacked together to form the reactor core. This type of HTGR is referred to as a prismatic HTGR, as opposed to a pebble bed HTGR, which uses billiard ball-size spherical fuel elements. The above-noted generic features of HTGRs coupled with the modular helium reactor design features of the SC-MHR allow for adequate removal of residual heat from the reactor by completely passive means in the event of a loss of forced cooling or loss of coolant pressure. This ensures that the fuel remains below time-at-temperature limits at which fuel damage could occur during such events, thereby ensuring radionuclide retention within the fuel particles. Thus, the safety of the SC-MHR (as well as other modular HTGR designs) is inherent to the design, and the rare, but severe, accidents postulated for light water reactors and other advanced nuclear concepts are not possible with the SC-MHR.It is anticipated that design, licensing, and construction of the SC-MHR demonstration plant could potentially be completed to enable plant operations to begin in 2022.