ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Bojan Petrovic, Marco Ricotti, Stefano Monti, Nikola Cavlina, Hisashi Ninokata
Nuclear Technology | Volume 178 | Number 2 | May 2012 | Pages 126-152
Technical Paper | Small Modular Reactors / Fission Reactors | doi.org/10.13182/NT12-A13555
Articles are hosted by Taylor and Francis Online.
This paper presents an overview of the first 10 years of the IRIS project, summarizing its main technical achievements and evaluating its impact on the resurgence of small modular reactors (SMRs). SMRs have been recurrently studied in the past, from early days of nuclear power, but have never gained sufficient traction to reach commercialization. This situation persisted also in the 1990s; the focus was on large reactors based on the presumed common wisdom of this being the only way to make the nuclear power plants competitive. IRIS is one of several small reactor concepts that originated in the late 1990s. However, the specific role and significance of IRIS is that it systematically pursued resolving technology gaps, addressing safety, licensing, and deployment issues and performing credible economics analyses, which ultimately made it possible - together with other SMR projects - to cross the "skepticism threshold" and led the making of a convincing case - domestically and internationally - for the role and viability of smaller reactors. Technologically, IRIS is associated with a number of novel design features that it either introduced or pursued more systematically than its predecessors and ultimately brought them to a new technical level. Some of these are discussed in this paper, such as the IRIS Safety-by-Design, security by design, the innovative thermodynamic coupling of its vessel and containment, systematic probabilistic risk assessment-guided design, approach to seismic design, approach to reduce the emergency planning zone to the site boundary, active involvement of academia, and so on. Many individuals and organizations contributed to that work, too many to list individually, and this paper attempts to pay tribute at least to their collective work.