ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
V. Shepelin, D. Koshmanov, E. Chepelin
Nuclear Technology | Volume 178 | Number 1 | April 2012 | Pages 29-38
Technical Paper | Safety and Technology of Nuclear Hydrogen Production, Control, and Management / Hydrogen Safety and Recombiners | doi.org/10.13182/NT12-A13545
Articles are hosted by Taylor and Francis Online.
The structure of the catalyst used in a passive autocatalytic recombiner (PAR) is crucial for making the PAR reliably functional in environments of high humidity and for concentrations of hydrogen above 8 to 10 vol %. The temperature of the catalyst has to be kept below 500°C to avoid the autoignition of hydrogen. A new type of catalyst for the PAR, a hydrophobic catalyst on a low porous metal carrier with a screen [HCm(screen)], was designed by Russian Energy Technologies. It consists of a porous Ti plate with the adsorbtion metal Pt. The surface of the catalyst was completely covered by a metal grid. In a series of tests with different small-scale PARs, the HCm(screen) catalyst was found to function under concentrations of hydrogen up to at least 20 vol %. The effects of mass and heat transfer processes (Fick diffusion, Knudsen diffusion, and Stefan flow) on the thermal regime and characteristics of the working catalyst are discussed. Metal grids of dense weaving appear to be the most suitable for a screen because they have a double function: removing the heat and acting as a gas separation membrane enriching with hydrogen the gas mix in the zone of the catalytic reaction.