ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
N. Meynet, A. Bentaib
Nuclear Technology | Volume 178 | Number 1 | April 2012 | Pages 17-28
Technical Paper | Safety and Technology of Nuclear Hydrogen Production, Control, and Management / Hydrogen Safety and Recombiners | doi.org/10.13182/NT12-A13544
Articles are hosted by Taylor and Francis Online.
A detailed model is proposed for numerical simulation of hydrogen ignition inside box-type passive autocatalytic recombiners (PARs). The model is focused on the reactive channel flow between two catalytic sheets of a recombiner. It includes complex chemistry and multicomponent transport for homogeneous hydrogen combustion and complex surface chemistry for heterogeneous hydrogen recombination. First calculations are dedicated to H2/air mixtures without steam at atmospheric pressure and room temperature. The analysis of the total homogeneous and heterogeneous heat release rates according to the inlet hydrogen molar fraction reveals three possible operation regimes for the recombiners from pure catalytic conversion to pure gaseous combustion. A physical criterion is then proposed for the ignition of H2/air mixtures inside the recombiners. The numerical ignition threshold at 5.4% of hydrogen without steam is in good agreement with experimental data. The criterion is then applied to the ternary diagram including all representative H2/air/H2O mixtures for severe accident conditions in pressurized water reactors. It shows a sharper transition from the catalytic regime to the gaseous one for high hydrogen concentrations. A specific strategy finally allows defining an extended PAR hydrogen ignition limit in the entire ternary diagram, which is well corroborated by the available experimental database.