ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
N. Meynet, A. Bentaib
Nuclear Technology | Volume 178 | Number 1 | April 2012 | Pages 17-28
Technical Paper | Safety and Technology of Nuclear Hydrogen Production, Control, and Management / Hydrogen Safety and Recombiners | doi.org/10.13182/NT12-A13544
Articles are hosted by Taylor and Francis Online.
A detailed model is proposed for numerical simulation of hydrogen ignition inside box-type passive autocatalytic recombiners (PARs). The model is focused on the reactive channel flow between two catalytic sheets of a recombiner. It includes complex chemistry and multicomponent transport for homogeneous hydrogen combustion and complex surface chemistry for heterogeneous hydrogen recombination. First calculations are dedicated to H2/air mixtures without steam at atmospheric pressure and room temperature. The analysis of the total homogeneous and heterogeneous heat release rates according to the inlet hydrogen molar fraction reveals three possible operation regimes for the recombiners from pure catalytic conversion to pure gaseous combustion. A physical criterion is then proposed for the ignition of H2/air mixtures inside the recombiners. The numerical ignition threshold at 5.4% of hydrogen without steam is in good agreement with experimental data. The criterion is then applied to the ternary diagram including all representative H2/air/H2O mixtures for severe accident conditions in pressurized water reactors. It shows a sharper transition from the catalytic regime to the gaseous one for high hydrogen concentrations. A specific strategy finally allows defining an extended PAR hydrogen ignition limit in the entire ternary diagram, which is well corroborated by the available experimental database.