ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Martin R. Williamson, Laurence F. Miller, Indraneel Sen
Nuclear Technology | Volume 177 | Number 3 | March 2012 | Pages 413-420
Technical Paper | Radiation Measurements and General Information | doi.org/10.13182/NT12-A13484
Articles are hosted by Taylor and Francis Online.
A methodology for simulating a neutron detector's pulse-height spectra (PHS) utilizing semiempirical equations for the light yield nonproportionality of organic scintillators is described. Using these simulations, suitable material synthesis techniques are established for optimizing the performance of neutron scintillators. A MATLAB program suite was developed to automate the process of generating the PHS by pairing these semiempirical equations with results generated using Monte Carlo radiation transport code (MCNPX) particle track (PTRAC) output files. This is accomplished by first calculating the energy deposited in a detector from each charged-particle reaction product generated from a neutron absorption event by postprocessing the MCNPX PTRAC output files. The energy deposited from each charged particle is then used in semiempirical light yield equations to determine the fluorescent light energy output by each charged particle. Finally, the individual contributions from each charged particle are recombined to accurately simulate the pulse generated from the neutron absorption event.