ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
David Chandler, G. Ivan Maldonado, L. D. Proctor, R. T. Primm, III
Nuclear Technology | Volume 177 | Number 3 | March 2012 | Pages 395-412
Technical Paper | Radioisotopes | doi.org/10.13182/NT12-A13483
Articles are hosted by Taylor and Francis Online.
The High Flux Isotope Reactor (HFIR) located at the Oak Ridge National Laboratory utilizes a large annular beryllium reflector that is subdivided into three concentric regions and encompasses the compact reactor core. Nuclear transmutations caused by neutron activation occur in the beryllium reflector regions, which leads to unwanted neutron-absorbing and radiation-emitting isotopes. During the past year, two topics related to the HFIR beryllium reflector were reviewed. The first topic included studying the neutron poison (3He and 6Li) buildup in the reflector regions and its effect on beginning-of-cycle reactivity. A new methodology was developed to predict the reactivity impact and estimated symmetrical critical control element positions as a function of outage time between cycles due to 3He buildup and was shown to be in better agreement with actual symmetrical critical control element position data than the current methodology. The second topic included studying the composition of the beryllium reflector regions at discharge and during postdischarge decay to assess the viability of transporting, storing, and ultimately disposing of the reflector regions currently stored in the spent-fuel pool. The postirradiation curie inventories were used to determine whether, for disposal purposes, the reflector regions are discharged as transuranic (TRU) waste or become TRU waste during the decay period and to determine the nuclear hazard category, which may affect the controls invoked for transportation and temporary storage. Two of the reflector regions were determined to be TRU waste at discharge, and the other region was determined to become TRU waste <2 yr after being discharged due to irradiation of the initial uranium impurity content (0.0044 wt% uranium). It was also concluded that all three of the reflector regions could be classified as nuclear hazard category 3 (potential for localized consequences only).