ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Kyoung-Ho Kang, Hyun-Sik Park, Seok Cho, Nam-Hyun Choi, In-Cheol Chu, Byong-Jo Yun, Kyung-Doo Kim, Yeon-Sik Kim, Won-Pil Baek, Ki-Yong Choi
Nuclear Technology | Volume 177 | Number 3 | March 2012 | Pages 382-394
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT12-A13482
Articles are hosted by Taylor and Francis Online.
A postulated steam generator tube rupture (SGTR) event of the APR1400 (Advanced Power Reactor 1400 MWe) was experimentally investigated with the thermal-hydraulic integral effect test facility ATLAS (Advanced Thermal-Hydraulic Test Loop for Accident Simulation). The SGTR accident is one of the design-basis accidents having a significant impact on safety from the viewpoint of radiological release. To simulate a SGTR accident of the APR1400, the SGTR-HL-04 and the SGTR-HL-05 tests were performed by simulating double-ended ruptures of a single U-tube and five U-tubes at the hot side of the ATLAS steam generator. Following the reactor trip induced by a high steam generator level signal, the primary-system pressure decreased and the secondary-system pressure increased until the main steam safety valves were opened to reduce the secondary-system pressure. A mild change of the water level in the core was observed, which was attributed to the small break sizes of the present tests compared with conventional loss-of-coolant-accident tests. No excursion in the cladding temperature was observed in either test. The break area affected the timing of the major events observed in the tests. Lessened heat transfer to the secondary side caused by earlier actuation of the safety injection pumps had more influence on the secondary pressure of the affected steam generator than the break flow. The break flow was discharged as single-phase water in both tests.