ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Michael Philip Short, Ronald George Ballinger
Nuclear Technology | Volume 177 | Number 3 | March 2012 | Pages 366-381
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT12-A13481
Articles are hosted by Taylor and Francis Online.
A material system that resists lead-bismuth attack and retains its strength at very high temperatures has been developed that enables increased outlet temperature and the promise of allowing increased coolant velocity and efficiency of lead- and lead-bismuth-cooled reactors if the behavior reported here is confirmed by long-term tests. The development of this system represents an enabling technology for lead-bismuth-cooled reactors. The system is a functionally graded composite (FGC), with separate layers engineered to perform corrosion resistance and structural functions. Alloy F91 was chosen as the structural layer of the composite because of its strength and radiation resistance. An Fe-12Cr-2Si alloy was developed based on previous work in the Fe-Cr-Si system, and was used as the corrosion-resistant cladding layer because of its chemical similarity to F91 and its superior corrosion resistance in lead and lead-bismuth in both oxidizing and reducing environments. The availability of the FGC will have significant impacts on lead-bismuth reactor design. The allowable increases in outlet temperature and coolant velocity lead to a large increase in power density - either to a smaller core for the same power rating or to more power output for the same-size core. In this paper, we report on the overall design of the FGC. We also discuss the general implications for lead-bismuth-cooled reactor design. In a future paper, we will discuss the fabrication and the initial evaluation of the actual product produced using commercial processing methods.