ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jong-Won Kim, Jong-Soo Choi, Young-In Kim, Young-Jong Chung, Goon-Cherl Park
Nuclear Technology | Volume 177 | Number 3 | March 2012 | Pages 336-351
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT12-A13479
Articles are hosted by Taylor and Francis Online.
SMART (System-integrated Modular Advanced ReacTor) is an integral-type nuclear reactor for cogeneration that adopts a flow mixing header assembly (FMHA) to maintain a uniform temperature distribution in the coolant at the core inlet in the case of failure in the steam generator or reactor coolant pump. The SMART FMHA is important for enhancing thermal mixing of the coolant during a transient and even during accidents, so it is essential that the thermal-hydraulic characteristics of flow in the FMHA be understood. Scaling analysis was performed to design the experimental facility for the FMHA test through computational fluid dynamics (CFD) analysis on the SMART prototype and experimental model. The experimental facility was designed by a linear scaling factor 0.18, and the experimental pressure and temperature conditions were 0.1 MPa and 30°C to 60°C, respectively.The experiment was performed in two ways: using FMHAs with large outlet flow hole sizes and FMHAs with small outlet flow hole sizes. In the cases of failure of one or two steam generators, the maximum temperature deviation on the side of the reactor core inlet was measured to be 1°C to 2°C, which demonstrates excellent thermal mixing through the FMHA. In particular, the FMHA with small outlet flow hole sizes tended to have better thermal mixing than the FMHA with large outlet flow hole sizes. The experimental results were comparable to those from CFD analysis.