ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Alexandre Vauselle, Yves Pontillon, Laurent Gallais
Nuclear Technology | Volume 177 | Number 2 | February 2012 | Pages 285-292
Technical Paper | Radiation Measurements and General Instrumentation | doi.org/10.13182/NT12-A13372
Articles are hosted by Taylor and Francis Online.
Speckle interferometry is an optical technique able to measure and to image displacement of surface. An original setup is used to investigate the measurement of a deformed cylinder as a feasibility study. This shape allows us to determine the capability of this technique to measure nuclear fuel rod cladding. Indeed, in a nuclear reactor, the fuel rod undergoes different physical phenomena that induce dimensional changes in the cladding. The aim of this study is to quantify the amplitude of local ridges appearing on the outer cladding surface due to the "hourglass shape" assumed by the pellets under irradiation.Because of the environmental constraints imposed by testing, an optical measuring device will be used to experimentally characterize mechanical strain induced by the interaction between the cladding and the fuel pellets. The aim of this paper is to examine the experimental feasibility of speckle interferometry using model samples.An experimental setup based on the speckle interferometry technique was therefore implemented to measure local deformation in nuclear fuel cladding. Different experiments on model samples have shown that this technique is well adapted to the measuring range, shape, and condition of the surface as well as the working distance.