ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Byeong-Il Jang, Moo Hwan Kim, Gyoodong Jeun
Nuclear Technology | Volume 177 | Number 2 | February 2012 | Pages 203-216
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT12-A13366
Articles are hosted by Taylor and Francis Online.
Research regarding small- and medium-sized nuclear reactors (SMRs) has increased because of multipurpose applications and increased safety. According to this tendency, a new conceptual nuclear reactor, the Regional Energy rX-10MWt (REX-10), is being designed. REX-10 adopts a way to remove heat by natural circulation and integrates the primary systems within a reactor pressure vessel. To evaluate the steady-state and transient behavior of natural circulation in REX-10, a NAtural Circulation TEst Reactor (NACTER) is designed using the scaling law. The ratio of the height and core power are 1/3 and 1/500, respectively.This research can be divided into three parts - a steady-state experiment, a transient experiment, and MARS (Multidimensional Analysis for Research Safety) code analysis. To investigate the natural circulation characteristics under the steady-state conditions, two parameters were chosen and various experiments were conducted. As a result of the steady-state experiment, we show that the most important parameter that affects the natural circulation behavior is the heater power. In addition, we carried out a transient experiment. The results of the transient experiment are that the NACTER facility is well controlled and guarantees safety in abrupt changes in experimental conditions. Finally, MARS code simulations were conducted. The MARS code results show good agreement with the experimental results.