ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Albert G. Gu
Nuclear Technology | Volume 177 | Number 2 | February 2012 | Pages 157-175
Technical Paper | Fission Reactors | doi.org/10.13182/NT12-A13363
Articles are hosted by Taylor and Francis Online.
This paper introduces a combined micro and macro (CMM) parameter perturbation theory for boiling water reactor (BWR) lattice design and optimization, which involves a large number of independent design variables and a large scale of variations. With this theory, engineers are able to meet the challenges from both accuracy and speed requirements. This theory was applied to the BWR fuel assembly lattice design in AREVA. A BWR fast lattice simulator (FLS) and a BWR fuel assembly lattice optimizer (BALO) were built and assisted engineers working on the lattice design and optimization. In addition to the discussion of this theory, the BALO/FLS calculation results are used to show that this theory can meet both speed and accuracy criteria of design as well as cover the large design range. Moreover, the results also show that two major perturbation issues in BWR lattice design and optimization, i.e., the large swing of average lattice enrichment and the thermal neutron black absorber's distribution as burnable poison can be resolved with the CMM perturbation theory. Finally, it is pointed out that the macro parameter perturbation combined with the micro parameter perturbation is extremely important to the accuracy.