ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Miltiadis Alamaniotis, Andreas Ikonomopoulos, Lefteri H. Tsoukalas
Nuclear Technology | Volume 177 | Number 1 | January 2012 | Pages 132-145
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT12-A13333
Articles are hosted by Taylor and Francis Online.
Nuclear power plants are complex engineering systems comprised of many interacting and interdependent mechanical components whose failure might lead to degraded plant performance or unplanned shutdown with loss of power generation and negative economic impact. As a result, continuous component surveillance and accurate prediction of their failing points is necessary for their on-time replacement. In this paper, a probabilistic kernel approach for intelligent online monitoring of mechanical components is presented. Specifically, the probabilistic kernel notion of Gaussian processes (GPs) is applied to the distribution prediction of a component's degradation trend. The proposed method exploits the learning ability of a GP and updates its prediction using a feedback mechanism. The methodology is tested on actual turbine blade degradation data for a variety of topologies (i.e., kernels). The GP estimations are compared to those obtained with a nonprobabilistic, kernel-based machine learning algorithm, the support vector regression (SVR). The comparison outcome clearly demonstrates that GP prediction accuracy outperforms SVR in the majority of the cases while providing a predictive distribution instead of point estimates as SVR does.