ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Miltiadis Alamaniotis, Andreas Ikonomopoulos, Lefteri H. Tsoukalas
Nuclear Technology | Volume 177 | Number 1 | January 2012 | Pages 132-145
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT12-A13333
Articles are hosted by Taylor and Francis Online.
Nuclear power plants are complex engineering systems comprised of many interacting and interdependent mechanical components whose failure might lead to degraded plant performance or unplanned shutdown with loss of power generation and negative economic impact. As a result, continuous component surveillance and accurate prediction of their failing points is necessary for their on-time replacement. In this paper, a probabilistic kernel approach for intelligent online monitoring of mechanical components is presented. Specifically, the probabilistic kernel notion of Gaussian processes (GPs) is applied to the distribution prediction of a component's degradation trend. The proposed method exploits the learning ability of a GP and updates its prediction using a feedback mechanism. The methodology is tested on actual turbine blade degradation data for a variety of topologies (i.e., kernels). The GP estimations are compared to those obtained with a nonprobabilistic, kernel-based machine learning algorithm, the support vector regression (SVR). The comparison outcome clearly demonstrates that GP prediction accuracy outperforms SVR in the majority of the cases while providing a predictive distribution instead of point estimates as SVR does.