ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
S. Chatzidakis, A. Ikonomopoulos, S. E. Day
Nuclear Technology | Volume 177 | Number 1 | January 2012 | Pages 119-131
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT12-A13332
Articles are hosted by Taylor and Francis Online.
This study presents numerical modeling of the SPERT-IV D-12/25 tests, a series of reactivity insertion, self-limiting, transients for a variety of coolant flow conditions. The PARET-ANL code is used to simulate the system response under these reactivity-initiated accident conditions and estimate the measured damage-indicating parameters - including the cladding temperature - using three departure from nucleate boiling (DNB) correlations, namely, those of Tong, Mirshak, and Bernath. The main objective of this sensitivity analysis is to identify, through performance measures, the DNB correlation influence on the prediction of the transient behavior. It appears that for reactivity insertions >1.20 $, the predicted transient behavior varies significantly depending on the applied DNB correlation. In addition, this study discusses the degree of conservatism introduced by each DNB correlation in the peak clad temperature estimates.