ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Liangxing Li, Shengjie Gong, Weimin Ma
Nuclear Technology | Volume 177 | Number 1 | January 2012 | Pages 107-118
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT12-A13331
Articles are hosted by Taylor and Francis Online.
This paper documents an experimental study on two-phase flow regimes and frictional pressure drop characteristics in a particulate (porous) bed packed with multidiameter (1.5-, 3-, and 6-mm) glass spheres. The experimental results provide new data to validate/develop hydrodynamic models for coolability analysis of debris beds formed in fuel-coolant interactions during a postulated severe accident. The POMECO-FL test facility is employed to perform the experiment, with the spheres packed in a test section of 90 mm diameter and 635 mm height. The pressure drops are measured for air/water two-phase flow through the packed bed, and flow patterns are obtained by means of visual observations. Meanwhile, local void fraction in the center of the bed is measured by a microconductive probe.The experimental results show that the frictional pressure drop of single-phase flow through the bed can be predicted by the Ergun equation, if the area mean diameter of the particles is chosen in the calculation. Given the so-determined effective particle diameter, the estimation of the Reed model for two-phase flow pressure gradient in the bed has a good agreement with the experimental data. The characteristics of the local void fraction can be used to predict flow pattern and mean void fraction. It is observed that slug flow prevails when the mean void fraction is <0.5, whereas annular flow dominates after the mean void fraction is >0.7. If the effective particle diameter is further used as an influential parameter in flow pattern identification, the observed flow regimes of two-phase flow in porous media are well predicted by the existing flow pattern map.