ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Liangxing Li, Shengjie Gong, Weimin Ma
Nuclear Technology | Volume 177 | Number 1 | January 2012 | Pages 107-118
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT12-A13331
Articles are hosted by Taylor and Francis Online.
This paper documents an experimental study on two-phase flow regimes and frictional pressure drop characteristics in a particulate (porous) bed packed with multidiameter (1.5-, 3-, and 6-mm) glass spheres. The experimental results provide new data to validate/develop hydrodynamic models for coolability analysis of debris beds formed in fuel-coolant interactions during a postulated severe accident. The POMECO-FL test facility is employed to perform the experiment, with the spheres packed in a test section of 90 mm diameter and 635 mm height. The pressure drops are measured for air/water two-phase flow through the packed bed, and flow patterns are obtained by means of visual observations. Meanwhile, local void fraction in the center of the bed is measured by a microconductive probe.The experimental results show that the frictional pressure drop of single-phase flow through the bed can be predicted by the Ergun equation, if the area mean diameter of the particles is chosen in the calculation. Given the so-determined effective particle diameter, the estimation of the Reed model for two-phase flow pressure gradient in the bed has a good agreement with the experimental data. The characteristics of the local void fraction can be used to predict flow pattern and mean void fraction. It is observed that slug flow prevails when the mean void fraction is <0.5, whereas annular flow dominates after the mean void fraction is >0.7. If the effective particle diameter is further used as an influential parameter in flow pattern identification, the observed flow regimes of two-phase flow in porous media are well predicted by the existing flow pattern map.