ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Yina Zhang, Chao Zhang, Jin Jiang
Nuclear Technology | Volume 177 | Number 1 | January 2012 | Pages 98-106
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT12-A13330
Articles are hosted by Taylor and Francis Online.
In this study, computational fluid dynamics simulations are carried out to predict the thermal-hydraulic behavior of supercritical fluids in the subchannel of supercritical water-cooled reactor (SCWR) fuel channels. The thermal-hydraulic behavior of supercritical water in triangular array and square array fuel rod bundles is studied numerically. The effects of various parameters including the pitch-to-diameter ratio and Reynolds number on the flow and the heat transfer characteristics are investigated. It is found that the turbulent mixing coefficient of supercritical water in subchannels is strongly dependent on the fluid bulk temperature and pitch-to-diameter ratio in the vicinity of the pseudo-critical point. To have a higher overall turbulent mixing coefficient, a pitch-to-diameter ratio less than 1.2 is recommended for the design of SCWR. The turbulent mixing coefficient correlation for the triangular array rod bundle is developed in this study based on the numerical results. However, the correlation for the mixing coefficient for the square array rod bundle cannot be expressed as a general correlation.