ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yina Zhang, Chao Zhang, Jin Jiang
Nuclear Technology | Volume 177 | Number 1 | January 2012 | Pages 98-106
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT12-A13330
Articles are hosted by Taylor and Francis Online.
In this study, computational fluid dynamics simulations are carried out to predict the thermal-hydraulic behavior of supercritical fluids in the subchannel of supercritical water-cooled reactor (SCWR) fuel channels. The thermal-hydraulic behavior of supercritical water in triangular array and square array fuel rod bundles is studied numerically. The effects of various parameters including the pitch-to-diameter ratio and Reynolds number on the flow and the heat transfer characteristics are investigated. It is found that the turbulent mixing coefficient of supercritical water in subchannels is strongly dependent on the fluid bulk temperature and pitch-to-diameter ratio in the vicinity of the pseudo-critical point. To have a higher overall turbulent mixing coefficient, a pitch-to-diameter ratio less than 1.2 is recommended for the design of SCWR. The turbulent mixing coefficient correlation for the triangular array rod bundle is developed in this study based on the numerical results. However, the correlation for the mixing coefficient for the square array rod bundle cannot be expressed as a general correlation.