ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Zoltán Perkó, Jan Leen Kloosterman, Sándor Fehér
Nuclear Technology | Volume 177 | Number 1 | January 2012 | Pages 83-97
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT12-A13329
Articles are hosted by Taylor and Francis Online.
Within the Generation IV initiative, the gas-cooled fast reactor (GFR) is one of the reactors dedicated to minor actinide (MA) transmutation. This paper summarizes the research performed with the GFR600 reference design in order to assess its MA burning capabilities. For the study, modules of the SCALE program system were used.Single-cycle parametric studies were performed with cores having different MA content and spatial distribution. It was shown that the addition of MAs to the fuel greatly reduced the reactivity loss during burnup. Moreover, the higher the MA content of the core, the higher the fraction of it that was fissioned; however, the more the delayed neutron fraction and the fuel temperature coefficient degraded. Significant reduction can be achieved in the amounts of neptunium and americium, while curium isotopes accumulate.The study of multiple consecutive cycles showed that by adding only depleted uranium (DU) to the reprocessed actinides in fuel fabrication (pure DU feed strategy), up to 70% of the initially loaded MAs can be fissioned in the first five cycles. Moreover, the reactor can be made critical during that time if the initial MA content is higher than 3%. By feeding MAs as well (constant MA content strategy), the reactivity has a steady increase from cycle to cycle, predominantly due to 238Pu breeding from 237Np.The effects of the isotopic composition of the plutonium and MAs were also examined by performing calculations with data specific to the spent fuel of traditional western pressure water reactors and Russian type VVER440 reactors. Despite the considerably different MA vectors, no significant deviation was found in their overall transmutation. However, the Pu composition had a strong effect on the reactivity and the delayed neutron fraction in the first cycles.Finally, cores having nonuniform MA content were investigated. It was found that though the MA destruction efficiency was significantly higher in the middle of the core than at the edge, moving some of the MAs from the outer regions to the center resulted in only minor improvement in their destruction. However, the spectral changes caused by the rearrangement increased the k-effective, which allowed higher burnups and increased MA destruction. Unfortunately, some of the safety parameters of the reactor degraded.