ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Masatoshi Yamasaki, Hironobu Unesaki, Akio Yamamoto, Toshikazu Takeda, Masaaki Mori
Nuclear Technology | Volume 177 | Number 1 | January 2012 | Pages 63-72
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT12-A13327
Articles are hosted by Taylor and Francis Online.
Erbia-credit super high burnup (Er-SHB) fuel offers a means to introduce >5 wt% 235U enrichment fuel; small amounts of erbia added to all the high-enriched UO2 powder can reduce the initial reactivity to <5 wt% enrichment level. By using this erbia credit, the new fuel can be treated as <5 wt% enriched fuel, and most modifications to the existing facilities and equipment can be avoided. One of the key issues for developing the Er-SHB fuel is to validate the criticality safety analysis tools for this fuel based on a series of experiments using fuel with small amounts of erbia in the entire core. For that purpose, a series of critical experiments have been performed at the Kyoto University Critical Assembly (KUCA). Four critical cores were constructed utilizing two different average enrichments, three different erbia contents, and four different H/U ratios. Numerical analyses have also been performed using several different cross-section libraries, and the results were compared with the measurements from the KUCA experiments. These results confirm the validity of the calculations and the cross-section libraries for determining erbia reactivity. This paper outlines the basic concepts of the Er-SHB fuel, the erbia experiments, and the analyses results.