ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Masatoshi Yamasaki, Hironobu Unesaki, Akio Yamamoto, Toshikazu Takeda, Masaaki Mori
Nuclear Technology | Volume 177 | Number 1 | January 2012 | Pages 63-72
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT12-A13327
Articles are hosted by Taylor and Francis Online.
Erbia-credit super high burnup (Er-SHB) fuel offers a means to introduce >5 wt% 235U enrichment fuel; small amounts of erbia added to all the high-enriched UO2 powder can reduce the initial reactivity to <5 wt% enrichment level. By using this erbia credit, the new fuel can be treated as <5 wt% enriched fuel, and most modifications to the existing facilities and equipment can be avoided. One of the key issues for developing the Er-SHB fuel is to validate the criticality safety analysis tools for this fuel based on a series of experiments using fuel with small amounts of erbia in the entire core. For that purpose, a series of critical experiments have been performed at the Kyoto University Critical Assembly (KUCA). Four critical cores were constructed utilizing two different average enrichments, three different erbia contents, and four different H/U ratios. Numerical analyses have also been performed using several different cross-section libraries, and the results were compared with the measurements from the KUCA experiments. These results confirm the validity of the calculations and the cross-section libraries for determining erbia reactivity. This paper outlines the basic concepts of the Er-SHB fuel, the erbia experiments, and the analyses results.