ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
L. Bosland, G. Weber, W. Klein-Hessling, N. Girault, B. Clement
Nuclear Technology | Volume 177 | Number 1 | January 2012 | Pages 36-62
Technical Paper | Reactor Safety | doi.org/10.13182/NT12-A13326
Articles are hosted by Taylor and Francis Online.
The Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France, and the Gesellschaft für Anlagen- und Reaktorsicherheit (GRS), Germany, have been involved in the analyses and modeling of PHEBUS tests and particularly in iodine chemistry behavior in the containment. To analyze the accuracy of the chemistry models developed and reproduce volatile iodine formation, iodine behavior in PHEBUS FPT-1 containment was modeled by both IRSN and GRS with two different codes: ASTEC and COSOSYS. The ways of modeling (using the ASTEC/IODE and COCOSYS/AIM respective modules) and the nodalization of both approaches are presented and compared, as well as the assumptions made to perform the calculations. The results of the comprehensive analyses are compared with the experimental results, and interpretation of the iodine behavior in the PHEBUS FPT-1 containment is given. Then, a common point of view is concluded that highlights the lack of knowledge for some phenomena of significant impact on the iodine behavior in the containment during a severe accident. Organic iodide and iodine oxide formation models in particular are pointed out for the gaseous phase. The need for improving iodine behavior models including their coupling to thermal hydraulics and aerosol physics is also explained.