ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
L. Bosland, G. Weber, W. Klein-Hessling, N. Girault, B. Clement
Nuclear Technology | Volume 177 | Number 1 | January 2012 | Pages 36-62
Technical Paper | Reactor Safety | doi.org/10.13182/NT12-A13326
Articles are hosted by Taylor and Francis Online.
The Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France, and the Gesellschaft für Anlagen- und Reaktorsicherheit (GRS), Germany, have been involved in the analyses and modeling of PHEBUS tests and particularly in iodine chemistry behavior in the containment. To analyze the accuracy of the chemistry models developed and reproduce volatile iodine formation, iodine behavior in PHEBUS FPT-1 containment was modeled by both IRSN and GRS with two different codes: ASTEC and COSOSYS. The ways of modeling (using the ASTEC/IODE and COCOSYS/AIM respective modules) and the nodalization of both approaches are presented and compared, as well as the assumptions made to perform the calculations. The results of the comprehensive analyses are compared with the experimental results, and interpretation of the iodine behavior in the PHEBUS FPT-1 containment is given. Then, a common point of view is concluded that highlights the lack of knowledge for some phenomena of significant impact on the iodine behavior in the containment during a severe accident. Organic iodide and iodine oxide formation models in particular are pointed out for the gaseous phase. The need for improving iodine behavior models including their coupling to thermal hydraulics and aerosol physics is also explained.