ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
John D. Bess
Nuclear Technology | Volume 177 | Number 1 | January 2012 | Pages 29-35
Technical Paper | Reactor Safety | doi.org/10.13182/NT12-A13325
Articles are hosted by Taylor and Francis Online.
A series of 15 critical experiments performed at the Rocky Flats Critical Mass Laboratory in the late 1960s was evaluated and then determined to represent acceptable benchmark experiments for the validation of calculational methods. This series of experiments was part of a larger set of experiments performed to evaluate operational safety margins at the Rocky Flats Plant. The experiments consisted of bare plutonium metal hemishells reflected by steel hemishells of increasing thickness and motor oil. The hemishell assembly was suspended within dual aluminum tanks. Criticality was achieved by pumping oil into the tanks such that effectively infinite reflection was achieved in all directions except directly above the assembly; then the critical oil height was recorded. The results of these experiments had been initially ignored because early computational methods had been inadequate to analyze partially reflected configurations. The dominant uncertainties include the uncertainty in the average plutonium density and the composition of materials in the gaps between the plutonium hemishells. Simple and detailed benchmark models were developed. Eigenvalue calculations using MCNP5 and ENDF/B-VII.0 were within 2 of the benchmark values. This benchmark evaluation has been added to the International Handbook of Evaluated Criticality Safety Benchmark Experiments.