ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Mir Sajjad Ali
Nuclear Technology | Volume 176 | Number 3 | December 2011 | Pages 442-451
Technical Note | Thermal Hydraulics | doi.org/10.13182/NT11-A13319
Articles are hosted by Taylor and Francis Online.
Advanced technology may be used to exclude the dynamic effects of postulated pipe ruptures from structural design consideration. However, it must first be demonstrated that the probability of pipe rupture is extremely low under conditions consistent with the design bases for the piping. Demonstration of a low probability of pipe rupture requires a deterministic fracture mechanics analysis that evaluates the stability of postulated small, through-wall flaws in piping and the ability to detect leakage through the flaws long before the flaws could grow to unstable sizes. The concept/methodology underlying such analyses is referred to as leak before break (LBB). LBB could be accepted as a technically justifiable approach for eliminating postulated double-ended primary system pipe ruptures equal to the pressurizer surge line size or larger. Large or double-ended reactor coolant system pipe ruptures equal to the pressurizer surge line size or larger need not consider the dynamic effects of pipe whipping that may result from their failure, following LBB approval of these piping systems. However, LBB may not be applied for the demonstration of adequate emergency core cooling (i.e., calculation of post-loss-of-coolant-accident peak clad temperature and cladding oxidation). Similarly, LBB may not be applied to the determination of containment building pressure and temperature responses to postulated primary and secondary system pipe ruptures or for the environmental qualification of mechanical and electrical equipment. This conclusion has resulted from extensive research and development and rigorous evaluations by the U.S. Nuclear Regulatory Commission, the German RSK, and the commercial nuclear power industry and its organizations since the early 1970s. The LBB concept can be applied to an axial flaw in a pipe, to a circumferential crack, or to when a flaw is stable under normal operating conditions and remains stable when there is a sudden dynamic event (i.e., seismic loading) as a time-dependent inertial LBB analysis. These analyses are deterministic and could be extended to probabilistic evaluations as well. This technical note describes the evolution of the LBB concept, application, issues, and resolutions raised in the process of regulatory actions globally.In this technical note, prior LBB studies in Europe and the United States, performed by various authors and organizations including the International Atomic Energy Agency, are also reviewed and presented. Also included are LBB options and licensing issues raised in the process of regulatory actions in the United States, along with the outlook and perspectives for LBB in the new generation of nuclear power plants.