ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
G. R. Longhurst, K. Tsuchiya, C. H. Dorn, S. L. Folkman, T. H. Fronk, M. Ishihara, H. Kawamura, T. N. Tranter, R. Rohe, M. Uchida, E. Vidal
Nuclear Technology | Volume 176 | Number 3 | December 2011 | Pages 430-441
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT11-A13318
Articles are hosted by Taylor and Francis Online.
Beryllium plays important roles in nuclear facilities. Its neutron multiplication capability and low atomic weight make it very useful as a reflector in fission reactors. Its low atomic number and high chemical affinity for oxygen have led to its consideration as a plasma-facing material in fusion reactors. In both applications, the beryllium and the impurities in it become activated by neutrons, transmuting them to radionuclides, some of which are long-lived and difficult to dispose of. Also, gas production, notably helium and tritium, results in swelling, embrittlement, and cracking, which means that the beryllium must be replaced periodically, especially in fission reactors where dimensional tolerances must be maintained. It has long been known that neutron activation of inherent iron and cobalt in the beryllium results in significant 60Co activity. In 2001, it was discovered that activation of naturally occurring contaminants in the beryllium creates sufficient 14C and 94Nb to render the irradiated beryllium "Greater-Than-Class-C" for disposal in U.S. radioactive waste facilities. It was further found that there was sufficient uranium impurity in beryllium that had been used in fission reactors up to that time that the irradiated beryllium had become transuranic in character, making it even more difficult to dispose of. In this paper we review the extent of the disposal issue, processes that have been investigated or considered for improving the disposability of irradiated beryllium, and approaches for recycling.