ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Z. D. Whetstone, K. J. Kearfott
Nuclear Technology | Volume 176 | Number 3 | December 2011 | Pages 395-413
Technical Paper | Radiation Transport and Protection | doi.org/10.13182/NT10-118
Articles are hosted by Taylor and Francis Online.
This research was conducted to determine the optimal way to shield a compact, isotropic neutron source into a beam for active interrogation neutron systems. To define the restricted emission angle and to protect nearby personnel when stand-off distances are limited, shielding materials were added around the source. Because of limited space in many locations where active neutron interrogation is employed, a compact yet effective design was desired. Using the Monte Carlo N-Particle Transport Code, several shielding geometries were modeled. Materials investigated were polyethylene, polyethylene enriched with 10B, water, bismuth, steel, nickel, INCONEL® alloy 600, tungsten, lead, and depleted uranium. Various simulations were run testing the individual materials and combinations of them. It was found that at a stand-off distance of 1.5 m from the source, the most effective shielding configuration is a combination of several layers of polyethylene and steel. Without any shielding, the dose is 3.71 × 10-15 Sv/source particle. With a shielding consisting of multiple layers of steel totaling 30 cm thickness interspersed with several layers of polyethylene totaling 20 cm thickness, the dose drops to 3.68 × 10-17 Sv/emitted neutron at radians opposite the shield opening. The layered shielding approach is more effective at reducing dose equivalent and neutron fluence than shields made out of single continuous layers of the same material and thicknesses. Adding boron to the polyethylene and substituting tungsten for steel would make the shielding more effective but would add mass and cost.