ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. H. Kim, B. T. Min, I. K. Park, S. W. Hong
Nuclear Technology | Volume 176 | Number 3 | December 2011 | Pages 372-386
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT11-A13314
Articles are hosted by Taylor and Francis Online.
Three triggered steam explosion experiments were performed in the TROI facility with a two-dimensional interaction vessel of 0.6-m diameter. The melt compositions were pure zirconia (ZrO2), 70:30 (UO2:ZrO2 = 70:30 wt%) eutectic corium, and 50:50 noneutectic corium. All tests were performed in a 1.0-m-deep water pool under atmospheric pressure. The water temperature was maintained at room temperature. The melt mass released to the water pool was [approximately]10 kg for each test. The tests with pure zirconia and 70:30 corium resulted in triggered steam explosions, while the test with 50:50 corium did not. However, a weak trace of a steam spike was detected with 50:50 corium with a fairly long delay time ([approximately]0.1 s) after an external triggering. The explosion efficiency was estimated from the dynamic load and dynamic pressure. The explosion efficiency was calculated to be 0.1% for zirconia and 0.04% for 70:30 corium. The explosivity of corium material was found to be rather low, compared to the simulant material (alumina, [approximately]3%).