ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Duk Jin Kim, Jong Hyun Kim, K. F. Barry, Ho-Young Kwak
Nuclear Technology | Volume 176 | Number 3 | December 2011 | Pages 337-351
Technical Paper | Fission Reactors | doi.org/10.13182/NT11-A13312
Articles are hosted by Taylor and Francis Online.
Thermoeconomic analysis was performed for high-temperature gas-cooled reactors (HTGRs) coupled with a steam methane reforming (SMR) plant in order to estimate the hydrogen production cost. Two possible HTGRs, a modified Brayton cycle HTGR (GT-HTGR) coupled with an SMR plant and a modified steam cycle HTGR (SC-HTGR) coupled with an SMR plant, were considered in this study. In these analyses, mass and energy conservation were applied strictly to each component of the system. Also, quantitative balances of the exergy and the exergetic cost for each component and for the whole system were carefully considered. The hydrogen production cost was estimated to be about $0.825/kg [$7.25/one million Btu (MM Btu)] for the GT-HTGR-SMR system and $0.728/kg ($6.41/MM Btu) for the ST-HTGR-SRM system with a uranium fuel cost of $8.40/MWh. The hydrogen production cost estimated in this study is considerably less than the economic target of $1.70/kg ($14.96/MM Btu), indicating that hydrogen production using HTGR with an SMR plant has great economic potential.