ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Stéphane Paquette, Hugues W. Bonin
Nuclear Technology | Volume 176 | Number 3 | December 2011 | Pages 315-336
Technical Paper | Fission Reactors | doi.org/10.13182/NT11-A13311
Articles are hosted by Taylor and Francis Online.
The present work describes the preliminary design of a 25-MW(thermal) nuclear reactor capable of providing safe and reliable heating and electricity to any Canadian Forces Bases, especially in the Arctic, as well as in comparable civilian applications. The aim of the project is to provide a nuclear reactor system with sufficient inherent safety characteristics as it is intended to run in automatic mode and be monitored by operators with limited experience and training. For the neutronics calculations, the design work of the reactor's core is carried out using the probabilistic simulation code MCNP 5 along with the Winfrith Improved Multigroup Scheme-Atomic Energy of Canada Limited (WIMS-AECL) deterministic code, Version 3.1, thus permitting a code-to-code comparison of the numerical results. Several design constraints related to coolant temperature and pressure, reactivity control, fuel enrichment, and time between refueling have been considered. The final reactor concept, named the Super Near Boiling 25 reactor (SNB25), provides heat energy dedicated to building and domestic water heating and supplies electricity through an organic Rankine cycle energy conversion plant. SNB25 employs TRISO fuel particles, contained in zirconium-sheathed fuel rods, and is light water cooled and moderated. Complete reactivity control is achieved through simple and reliable mechanical means consisting of 133 control rods and six adjustable radial reflector plates. The optimized reactor core configuration, along with its intrinsic control system, allows for the power plant to operate safely for more than a decade between refuelings from a typical central heating plant or the basement of a multilevel office building. The work also included a preliminary investigation of the nonnuclear part of the energy supply system including heat exchangers and the turbine-driven, electricity-generating system.