ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Clifford E. Singer, Hermann von Brevern
Nuclear Technology | Volume 176 | Number 2 | November 2011 | Pages 227-237
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT11-A13298
Articles are hosted by Taylor and Francis Online.
Formulas are given for extrapolating uranium prices that could result from future trajectories for the cumulative use of native uranium. The logarithm of the extrapolated price is given by a monotonically increasing trend curve plus a sinusoidal oscillation calibrated to historical data. The trend curve as a function of cumulative extraction of native uranium accounts both for accessing lower ore grades and for exploiting more-difficult-to-access richer ores as the more easily accessed richer ores are depleted. Accounting for both of these effects, the logarithm of the monotonic price trend is linear in the logarithm of cumulative extraction of native uranium, with least variance between observations and data of a power-law slope of 1/4.5 up to the point where a limit on the accessibility of the remaining highest-grade ores is reached. (However, a slope of 1/5.6 gives an almost equally good fit.) As an example, a ratio 4 of maximum depth of other mines to maximum depth of current uranium mines is used as a measure of the accessibility limit. This limit is first reached when the background trend curve uranium price reaches $143/kg of elemental uranium, in U.S. dollars inflation adjusted to year 2007 prices ($US2007). Thereafter, the accessibility limit gradually reduces the cumulative amount of native uranium extracted at a given cost below that computed from the power law, multiplying it by a factor of 0.59 when the trend price reaches 300 $US2007/kg. Increases of nuclear energy produced per kilogram of uranium mined with increasing uranium costs are also accounted for. A fraction of global nuclear energy users can develop a higher nuclear energy production rate per kilogram of mined uranium, e.g., by reusing the fissile material in spent fuel. Resulting cumulative cost changes as a function of cumulative nuclear energy use are presented in graphical and tabular form for a variety of input parameters.