ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Joanna Peltonen, Tomasz Kozlowski
Nuclear Technology | Volume 176 | Number 2 | November 2011 | Pages 195-210
Technical Paper | Reactor Safety | doi.org/10.13182/NT11-A13296
Articles are hosted by Taylor and Francis Online.
Analyses of nuclear reactor safety have increasingly required the coupling of full three-dimensional neutron-kinetics (NK) core models with system transient thermal-hydraulic (TH) codes. To produce results within a reasonable computing time, the coupled codes use different spatial descriptions of the reactor core. The TH code uses few, typically 5 to 20, TH channels that represent the core. The NK code uses the explicit node for each fuel assembly. Therefore, a spatial mapping of coarse grid TH and fine grid NK domain is necessary. However, improper mappings may result in the loss of valuable information, thus causing inaccurate prediction of safety parameters.The purpose of this investigation is to study the sensitivity of spatial coupling (channel refinement and spatial mapping) and develop recommendations for NK-TH mapping in the simulation of safety transients - control rod drop, turbine trip, and feedwater transient - combined with stability performance (minimum pump speed of recirculation pumps).The research methodology consists of a spatial coupling convergence study, as an increasing number of TH channels and different mapping schemes approach the reference case. The reference case consists of one TH channel per one fuel assembly. The comparison of results has been done under steady-state and transient conditions. The obtained results and conclusions are presented in this paper.