ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Tae-Hoon Lee, Young Soo Kim, Hee-Sung Shin, Ho-Dong Kim
Nuclear Technology | Volume 176 | Number 1 | October 2011 | Pages 147-154
Radiation Measurements and General Instrumentation | doi.org/10.13182/NT11-A12549
Articles are hosted by Taylor and Francis Online.
A passive neutron coincidence counter for nuclear material measurement of the advanced spent fuel conditioning process (ACP) has been developed by the Korea Atomic Energy Research Institute (KAERI) since 2003 and was deployed in a hot cell of the ACP Facility (ACPF) in 2005. The most dominant neutron source among the spontaneous fission nuclides contained in spent fuel is 244Cm. To obtain the neutron counting rates of the singles, doubles, and triples coincidences of the neutron counter with an increment of the 244Cm mass, a hot test of the neutron counter was performed in 2007 with several spent fuel rod-cuts in the ACPF hot cell. The source term of the spent fuel rod-cuts was obtained using the ORIGEN-ARP burnup simulation code, and a set of preliminary calibration curves of the neutron counter for 244Cm was generated. The calibration curves were also obtained from the results of an MCNPX code simulation, but there was a wide difference of [approximately]30% in the slope of the double-rate calibration curve between the measurements and the MCNPX results. Chemical analysis results of the spent fuel samples were obtained in September 2008, and it was found that the difference between the measurements and the MCNPX results is due to an error in the declared burnup since the chemical analysis burnups of the samples differ from the declared ones by [approximately]10%. The expected burnup of each rod-cut was also obtained from the results of self-multiplication correction for the 244Cm mass of the rod-cuts, and the difference between the expected burnup results and the chemical analysis results is <2%. This study shows high performance of the neutron coincidence counter for 244Cm measurements of spent fuel and also shows that the burnup of spent fuel samples can be obtained through a series of ORIGEN-ARP code simulations if it is possible to acquire the measurement data of neutron counting rates for 244Cm of the samples.