ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
Keith C. Bledsoe, Jeffrey A. Favorite, Tunc Aldemir
Nuclear Technology | Volume 176 | Number 1 | October 2011 | Pages 106-126
Radiation Transport and Protection | doi.org/10.13182/NT176-106
Articles are hosted by Taylor and Francis Online.
Determining the components of a radioactive source/shield system using the system's radiation signature, a type of inverse transport problem, is one of great importance in homeland security, material safeguards, and waste management. Here, the Levenberg-Marquardt (or simply "Marquardt") method, a standard gradient-based optimization technique, is applied to the inverse transport problems of interface location identification, shield material identification, source composition identification, and material mass density identification (both separately and combined) in multilayered radioactive source/shield systems. One-dimensional spherical problems using leakage measurements of neutron-induced gamma-ray lines and two-dimensional cylindrical problems using flux measurements of uncollided passive gamma-ray lines are considered. Gradients are calculated using an adjoint-based differentiation technique that is more efficient than difference formulas. The Marquardt method is iterative and directly estimates unknown interface locations, source isotope weight fractions, and material mass densities, while the unknown shield material is identified by estimating its macroscopic gamma-ray cross sections. Numerical test cases illustrate the utility of the Marquardt method using both simulated data that are perfectly consistent with the optimization process and realistic data simulated by Monte Carlo.