ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Keith C. Bledsoe, Jeffrey A. Favorite, Tunc Aldemir
Nuclear Technology | Volume 176 | Number 1 | October 2011 | Pages 106-126
Radiation Transport and Protection | doi.org/10.13182/NT176-106
Articles are hosted by Taylor and Francis Online.
Determining the components of a radioactive source/shield system using the system's radiation signature, a type of inverse transport problem, is one of great importance in homeland security, material safeguards, and waste management. Here, the Levenberg-Marquardt (or simply "Marquardt") method, a standard gradient-based optimization technique, is applied to the inverse transport problems of interface location identification, shield material identification, source composition identification, and material mass density identification (both separately and combined) in multilayered radioactive source/shield systems. One-dimensional spherical problems using leakage measurements of neutron-induced gamma-ray lines and two-dimensional cylindrical problems using flux measurements of uncollided passive gamma-ray lines are considered. Gradients are calculated using an adjoint-based differentiation technique that is more efficient than difference formulas. The Marquardt method is iterative and directly estimates unknown interface locations, source isotope weight fractions, and material mass densities, while the unknown shield material is identified by estimating its macroscopic gamma-ray cross sections. Numerical test cases illustrate the utility of the Marquardt method using both simulated data that are perfectly consistent with the optimization process and realistic data simulated by Monte Carlo.