ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Constantine P. Tzanos, B. Dionne
Nuclear Technology | Volume 176 | Number 1 | October 2011 | Pages 93-105
Thermal Hydraulics | doi.org/10.13182/NT11-A12545
Articles are hosted by Taylor and Francis Online.
The simulation of the BR2 test A/400/1 was undertaken to support the safety analysis of the conversion of the BR2 research reactor to low-enriched uranium (LEU) fuel and to extend the validation basis of the RELAP code for analysis of the conversion of research reactors from highly enriched fuel to LEU. This test was characterized by a steady-state peak heat flux of 400 W/cm2 , total loss of flow without loss of system pressure, reactor scram, flow reversal, and reactor cooling by natural convection. This paper presents the RELAP analysis of test A/400/1 and the comparison of code predictions with experimental measurements of peak cladding temperatures during the transient at different axial locations in an instrumented fuel assembly. The simulations show that accurate representation of the pump coastdown characteristics and of the power distribution, especially after reactor scram, between the fuel assemblies and the moderator/reflector regions are critical for correct prediction of the peak cladding temperatures during the transient. Detailed MCNP and ORIGEN simulations were performed to compute the power distribution between the fuel assemblies and the moderator/reflector regions. With these distributions, the predicted peak cladding temperatures were in a good agreement with experimental measurements.