ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Constantine P. Tzanos, B. Dionne
Nuclear Technology | Volume 176 | Number 1 | October 2011 | Pages 93-105
Thermal Hydraulics | doi.org/10.13182/NT11-A12545
Articles are hosted by Taylor and Francis Online.
The simulation of the BR2 test A/400/1 was undertaken to support the safety analysis of the conversion of the BR2 research reactor to low-enriched uranium (LEU) fuel and to extend the validation basis of the RELAP code for analysis of the conversion of research reactors from highly enriched fuel to LEU. This test was characterized by a steady-state peak heat flux of 400 W/cm2 , total loss of flow without loss of system pressure, reactor scram, flow reversal, and reactor cooling by natural convection. This paper presents the RELAP analysis of test A/400/1 and the comparison of code predictions with experimental measurements of peak cladding temperatures during the transient at different axial locations in an instrumented fuel assembly. The simulations show that accurate representation of the pump coastdown characteristics and of the power distribution, especially after reactor scram, between the fuel assemblies and the moderator/reflector regions are critical for correct prediction of the peak cladding temperatures during the transient. Detailed MCNP and ORIGEN simulations were performed to compute the power distribution between the fuel assemblies and the moderator/reflector regions. With these distributions, the predicted peak cladding temperatures were in a good agreement with experimental measurements.