ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
V. Subramanian, R. Baskaran, J. Misra, R. Indira
Nuclear Technology | Volume 176 | Number 1 | October 2011 | Pages 83-92
Reactor Safety | doi.org/10.13182/NT11-A12544
Articles are hosted by Taylor and Francis Online.
In core disruptive accident conditions of sodium-cooled fast reactors, the reactor containment building (RCB) is filled with a large amount of sodium aerosols, along with fuel and fission product aerosols. The environmental source term depends on the quantity of aerosols released from RCB, which in turn depends on the quantity of aerosols that remains suspended in the RCB volume. The sodium aerosols are generated by the combustion process, resulting in micrometer-sized aerosols, while fuel and fission product aerosols are generated by vaporization condensation, resulting in nanometer-sized aerosols. To ascertain the behavior of mixed aerosols generated by the different processes, experiments are conducted by generating sodium aerosols and nonradioactive fission product aerosols and then studying their behavior in a closed vessel. The study includes (a) the initial size distribution of CeO2 and SrO2 aerosols, (b) the behavior of suspended mass concentration as a function of time, and (c) the behavior of suspended number concentration as a function of time. The initial size of the sodium combustion aerosols is [approximately]1.0 m, whereas the initial size of the fuel and fission product aerosols is nanometer sized ([approximately]30 nm). In the context of the behavior of the two different-sized aerosols, sodium aerosol behavior dominates the overall suspended mass concentration of the system. The rate of change of number concentration exhibits two regions. The timescale involved for the Brownian coagulation region is found to be [approximately]80 min for nonradioactive fission product aerosols, whereas it lasts only 20 to 30 min when the aerosol system is mixed with sodium aerosols.