ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Aung Tharn Daing, Myung-Hyun Kim
Nuclear Technology | Volume 176 | Number 1 | October 2011 | Pages 40-56
Technical Paper | Second Seminar on Accelerated Testing of Materials in Spent Nuclear Fuel and High-Level Waste Storage Systems / Fission Reactors | doi.org/10.13182/NT176-40
Articles are hosted by Taylor and Francis Online.
The negative impact of a boron dilution accident on the safety of a current pressurized water reactor (PWR) initiated investigations with the aim of checking the feasibility of reduced boron concentration operation. In addition, reduction of the maximum boron concentration in a PWR is a practical and feasible means to substantially reduce the radiation dose to operators and to minimize corrosion damage. Four types of integral burnable absorbers have been considered: gadolinium, integral fuel burnable absorber (IFBA), erbia, and alumina boron carbide. Under consideration of four different kinds of fuel assemblies (FA), four core design candidates were developed by applying current PWR OPR-1000 technology and by keeping major engineering design constraints and the equivalent fuel enrichment level used in the reference core (REF) design. However, an optimal design was targeted to achieve comparable discharge burnup as well as favorable design safety parameters. The comparative analysis between the REF and the optimal core designs is presented here. One of the designs is suggested as the most promising and favorable low boron core (LBC) design in this framework. The proper combination of axial and radial enrichment zoning patterns plus a mixture of fresh FAs with depleted assemblies in an LBC design candidate with an IFBA-bearing FA at equilibrium cycle could bring a two times narrower axial offset variation than that of the REF design, maintain an acceptable power peaking factor [approximately]23% lower than the design limit, and achieve higher fuel burnup. It was observed that this optimal LBC design could comply with current OPR-1000 reactor acceptance criteria associated with smooth reactivity swing, more flattened power distribution, and desired limiting safety parameters despite an 18% loss of shutdown reactivity worth at beginning of cycle when compared to the REF design.