ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Herve Issard, Pascale Abadie
Nuclear Technology | Volume 176 | Number 1 | October 2011 | Pages 2-8
Special Issue Technical Paper | Second Seminar on Accelerated Testing of Materials in Spent Nuclear Fuel and High-Level Waste Storage Systems / Materials for Nuclear Systems | doi.org/10.13182/NT11-A12538
Articles are hosted by Taylor and Francis Online.
Dry storage cask materials must withstand severe temperature conditions coming from conservative ambient assumptions and from envelope values of residual heat from spent fuels. TN International (TNI) research and development has consequently developed and characterized neutron-shielding materials that show high shielding capabilities and correspond to the needs of a range of temperatures. Aging tests of specimens have been performed accordingly.This paper shows the results of aging tests on shielding material Vyal-B, a material patented by TNI.TNI Vyal-B shielding material is composed of a thermoset resin matrix (vinylester resin in solution of styrene) and two mineral fillers (alumina hydrate and zinc borate). The cross-linking of the polymer leads to a rigid three-dimensional lattice, solid and resistant to transport conditions, especially the temperatures.TNI Vyal-B's shielding ability for neutron radiation is related to the atomic density of hydrogen and boron. Atomic densities can be calculated from the chemical composition and bulk density of samples, and these two parameters are checked initially just after manufacturing.Assessment of the long-term behavior of TNI Vyal-B shielding material has been carried out through exposition tests of samples at different temperatures (150°C to 170°C). The test results give the variations of chemical composition and density. After the aging tests, the new chemical compositions are taken into account in the shielding analysis of the package. Considering a degradation mechanism following Arrhenius behavior, a maximal temperature of long-term use, for example, for interim storage, was confirmed equal to 160°C.