ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yuichi Niibori, Joonhong Ahn, Hitoshi Mimura
Nuclear Technology | Volume 175 | Number 3 | September 2011 | Pages 641-651
Technical Paper | NURETH-13 Special / Radioactive Waste Management and Disposal | doi.org/10.13182/NT11-A12512
Articles are hosted by Taylor and Francis Online.
Relative permeability kr is a practical tool to describe two-phase flow in the performance assessment of a geological disposal system of radioactive waste. So far, to avoid thermal alteration of an engineered barrier system such as bentonite, the maximum temperature in the conceptual design of a Japanese geological disposal system has been limited to <373 K. However, for a limited time period, even if the temperature exceeds 373 K or the boiling point at the underground level, the robustness of the system is expected to be sufficient. An upward revision of the permissible maximum temperature would reduce the total space of the repository and would result in more effective use of the space. Therefore, when two-phase flow is also considered, a more reliable estimate of the thermal impact on the repository system is needed.In general, the fluid flow velocities of two phases are described by Darcy's law including the relative permeabilities defined as the functions of liquid-water saturation (or steam saturation), e.g., Corey's equations. However, such saturation (e.g., liquid-water saturation Sw) is not always uniformly distributed in the grid cells of the numerical implementation. In this study, the uncertainty of kr due to the distribution of Sw was examined by using various kinds of probability density functions (pdf's). The results suggest that the apparent kr value can be numerically described by the arithmetic mean, the standard deviation, and the skewness of Sw. (In other words, the apparent value of kr does not depend on the types of pdf's.) Since the value of Sw is in the range of 0 to 1, the standard deviation and the skewness are limited. Therefore, the apparent values of kr also are in a limited range. Using the Lagrange multiplier method, this study examined the ranges of the kr value for each arithmetic mean of saturation Swa. Furthermore, by considering both the frequency distribution and the spatial distribution of saturation, this study quantitatively shows the degree of uncertainty of relative-permeability curves. These curves can explain the scattered data of two-phase-flow experiments.