ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Zhi-Gang Zhang, Ken-Ichiro Sugiyama
Nuclear Technology | Volume 175 | Number 3 | September 2011 | Pages 619-627
Technical Paper | NURETH-13 Special / Thermal Hydraulics | doi.org/10.13182/NT11-A12510
Articles are hosted by Taylor and Francis Online.
To characterize the relationship between hydrodynamic and thermal effects on fragmentation of molten core structural material, which mainly includes cladding material, with the interaction of the coolant of sodium under a wide range of thermal and hydrodynamic conditions, this paper focuses on a series of fragmentation characteristics of a single molten Type 304 stainless steel droplet (5 g) with an ambient Weber number Wea from 199 to 586 and superheat conditions from 23 to 276°C, which penetrates into a sodium pool at an initial temperature from 301 to 313°C.In our experiments, fine fragmentations of single molten stainless steel droplets with high Wea were clearly observed, even under a supercooled condition that is well below its melting point of 1427°C. The dimensionless mass median diameters (Dm/D0) of molten droplets with high Wea are less than molten droplets with low Wea under the same thermal condition. When Wea is approximately >250, the hydrodynamic effect on fragmentation becomes predominant over the thermal effect under a relatively low superheat condition. For a higher Wea range, the comparisons indicate that the fragment sizes of the molten stainless steel droplet and jet have similar distributions to those of molten metallic fuel jets even with different thermophysical properties and a thousandfold mass difference, which implies the possibility that the fragment size characteristics of molten metal jets could be evaluated by the interaction of a single droplet with the sodium coolant without the consideration of dropping modes and mass.