ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Zhi-Gang Zhang, Ken-Ichiro Sugiyama
Nuclear Technology | Volume 175 | Number 3 | September 2011 | Pages 619-627
Technical Paper | NURETH-13 Special / Thermal Hydraulics | doi.org/10.13182/NT11-A12510
Articles are hosted by Taylor and Francis Online.
To characterize the relationship between hydrodynamic and thermal effects on fragmentation of molten core structural material, which mainly includes cladding material, with the interaction of the coolant of sodium under a wide range of thermal and hydrodynamic conditions, this paper focuses on a series of fragmentation characteristics of a single molten Type 304 stainless steel droplet (5 g) with an ambient Weber number Wea from 199 to 586 and superheat conditions from 23 to 276°C, which penetrates into a sodium pool at an initial temperature from 301 to 313°C.In our experiments, fine fragmentations of single molten stainless steel droplets with high Wea were clearly observed, even under a supercooled condition that is well below its melting point of 1427°C. The dimensionless mass median diameters (Dm/D0) of molten droplets with high Wea are less than molten droplets with low Wea under the same thermal condition. When Wea is approximately >250, the hydrodynamic effect on fragmentation becomes predominant over the thermal effect under a relatively low superheat condition. For a higher Wea range, the comparisons indicate that the fragment sizes of the molten stainless steel droplet and jet have similar distributions to those of molten metallic fuel jets even with different thermophysical properties and a thousandfold mass difference, which implies the possibility that the fragment size characteristics of molten metal jets could be evaluated by the interaction of a single droplet with the sodium coolant without the consideration of dropping modes and mass.