ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
S. N. Ritchey, M. Solom, O. Draznin, I. Choutapalli, K. Vierow
Nuclear Technology | Volume 175 | Number 3 | September 2011 | Pages 529-537
Technical Paper | NURETH-13 Special / Thermal Hydraulics | doi.org/10.13182/NT11-A12504
Articles are hosted by Taylor and Francis Online.
An experimental study on flooding in a large-diameter tube is being conducted. In a countercurrent, two-phase-flow system, flooding can be defined as the onset of flow reversal of the liquid component that results in cocurrent flow. Flooding can be perceived as a limit to two-phase countercurrent flow, meaning that pairs of liquid and gas flow rates exist that define the envelope for stable countercurrent flow for a given system. Flooding in the AP600 pressurizer surge line can affect the vessel refill rate following a small-break loss-of-coolant accident. Analysis of hypothetical severe accidents with current simplified flooding models shows that these models represent the largest uncertainty in steam generator tube creep rupture. During a hypothetical station blackout scenario without auxiliary feedwater recovery, should the hot leg become voided, the pressurizer liquid will drain to the hot leg, and flooding may occur in the surge line. Experiments were conducted using a 76.2-mm (3-in.)-diam tube along with subcooled water and superheated steam as the working fluids at atmospheric pressure. Water flows down the inside of the tube as an annulus while the steam flows upward in the middle. Water flow rates vary from 0.00022 to 0.00076 m3 /s (3.5 to 12 gal/min), and the water inlet temperature is [approximately]70°C. The steam inlet temperature is [approximately]110°C. It was found that a larger steam flow rate was needed to achieve flooding for a lower water flow rate and for a higher water flow rate. These unique data for flooding in steam-water systems in large-diameter tubes will reduce uncertainty in flooding models currently utilized in reactor safety codes.