ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Michael Epstein, Hans K. Fauske, Wison Luangdilok
Nuclear Technology | Volume 175 | Number 3 | September 2011 | Pages 520-528
Technical Paper | NURETH-13 Special / Thermal Hydraulics | doi.org/10.13182/NT11-A12503
Articles are hosted by Taylor and Francis Online.
It is well known that under certain circumstances a mixture of coarse, hot (molten) drops in water that forms from pouring a hot melt into water explodes. This so-called "steam explosion" is generally believed to involve fine fragmentation of the melt drops induced by steam bubble collapse and concomitant water vaporization on a timescale that is short compared with the steam pressure relief time. Motivated by a previously published idea that rapid solidification would render uranium oxide (UO2)-containing (corium) melt drops stiff and resistant to the fragmentation induced by steam bubble collapse that is requisite for an explosion, here we combine solidification theory with an available theory of the stability of thin, submerged crusts subject to acceleration to predict the "cutoff time" beyond which melt drop fragmentation is suppressed by crust cover rigidity. Illustrative calculations show that the cutoff time for corium melt drops in water is a fraction of a second and probably shorter than the time it takes to form the coarse-premixture configuration of melt drops in water that is a prerequisite for an explosion, while the opposite is true for the molten aluminum oxide (Al2O3)-water system for which the window of opportunity for an explosion is predicted to be several seconds. These theoretical findings are consistent with previous experiments that revealed molten UO2 or corium pours into water to be nonexplosive and produced steam explosions upon pouring molten Al2O3 into water.