ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
John T. Mihalczo
Nuclear Technology | Volume 175 | Number 2 | August 2011 | Pages 498-508
Technical Paper | Radiation Measurements and General Instrumentation | doi.org/10.13182/NT11-A12320
Articles are hosted by Taylor and Francis Online.
Prompt neutron decay at delayed criticality was measured by Oak Ridge National Laboratory for uranium-reflected highly enriched uranium (HEU) and Pu metal spheres (FLATTOP), for an unreflected Pu metal (4.5% 240Pu) sphere (JEZEBEL) at Los Alamos National Laboratory (LANL) and for an unreflected HEU metal sphere at Oak Ridge Critical Experiments Facility. The average prompt neutron decay constants from hundreds of Rossi- and randomly pulsed neutron measurements with 252Cf at delayed criticality are as follows: 3.8458 ± 0.0016 × 105 s-1 , 2.2139 ± 0.0022 × 105 s-1 , 6.3126 ± 0.0100 × 105 s-1 , and 1.1061 ± 0.0009 × 106 s-1 , respectively. These values agree with previous measurements by LANL for FLATTOP, JEZEBEL, and GODIVA I as follows: 3.82 ± 0.02 × 105 s-1 for a uranium core; 2.14 ± 0.05 × 105 s-1 and 2.29 × 105 s-1 (uncertainty not reported) for a plutonium core; 6.4 ± 0.1 × 105 s-1 , and 1.1 ± 0.1 × 106 s-1 , respectively, but have smaller uncertainties because of the larger number of measurements. For the FLATTOP and JEZEBEL assemblies, the measurements agree with calculations. Traditionally, the calculated decay constants for the bare uranium metal sphere GODIVA I and the Oak Ridge Uranium Metal Sphere were higher than experimental by [approximately]10%. Other energy-dependent quantities for the bare uranium sphere agree within 1%.