ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
D. Kontogeorgakos, F. Tzika, I. E. Stamatelatos
Nuclear Technology | Volume 175 | Number 2 | August 2011 | Pages 435-444
Technical Paper | Radiation Transport and Protection | doi.org/10.13182/NT175-435
Articles are hosted by Taylor and Francis Online.
A computational method for the radiological characterization of the Greek Research Reactor (GRR-1) core supporting grid plate is presented. It is based on three-dimensional Monte Carlo neutron and photon transport simulations, analytical radionuclide inventory calculations, and measured gamma dose rates. The spatial distribution of neutron fluxes and spectra were derived by an implicit MCNP reactor core model. The radionuclide inventory was estimated using the FISPACT code. The associated source term was included in an accurate MCNP model of the grid plate assembly deriving the resulting gamma dose rates. The dominant gamma dose-producing nuclide was 60Co generated by activation of cobalt impurity in the stainless steel parts. The cobalt impurity concentration in the stainless steel parts was determined on the basis of best agreement between gamma dose rate calculations and measurements. The specific activity of grid plate components was evaluated as a function of cooling time after reactor shutdown. The proposed methodology provides a useful tool for work planning, control of occupational exposure and waste management during reactor renovation, and maintenance or decommissioning activities.