ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Young S. Ham, Shivakumar Sitaraman
Nuclear Technology | Volume 175 | Number 2 | August 2011 | Pages 401-418
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT11-A12312
Articles are hosted by Taylor and Francis Online.
A novel methodology to detect diversion of spent fuel from pressurized water reactors (PWRs) has been developed in order to address a long unsolved safeguards verification problem for an international safeguards organization such as the International Atomic Energy Agency (IAEA) or European Atomic Energy Community (EURATOM). The concept involves inserting tiny neutron and gamma detectors into the guide tubes of a spent fuel assembly (SFA) and measuring the signals. The guide tubes form a quadrant symmetric pattern in the various PWR fuel product lines, and the neutron and gamma signals from these various locations are processed to obtain a unique signature for an undisturbed SFA. Signatures based on the neutron and gamma signals individually or in a combination can be developed. Removal of fuel pins from the SFA will cause the signatures to be visibly perturbed thus enabling the detection of diversion. All of the required signal processing to obtain signatures can be performed on standard laptop computers.Monte Carlo simulation studies and a set of controlled experiments with actual commercial PWR SFAs were performed, and they validated this novel methodology. Based on the simulation studies and benchmarking measurements, the methodology promises to be a powerful and practical way to detect partial defects that constitute 10% or more of the total active fuel pins. This far exceeds the IAEA goal that for SFAs that can be dismantled at the facility - which is essentially the case for most PWR fuel - the partial defect test used should assure that at least half the fuel pins are present in each SFA. The methodology does not rely on any operator-provided data like burnup or cooling time and does not require movement of the SFA from the storage rack in the spent-fuel pool.