ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Young S. Ham, Shivakumar Sitaraman
Nuclear Technology | Volume 175 | Number 2 | August 2011 | Pages 401-418
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT11-A12312
Articles are hosted by Taylor and Francis Online.
A novel methodology to detect diversion of spent fuel from pressurized water reactors (PWRs) has been developed in order to address a long unsolved safeguards verification problem for an international safeguards organization such as the International Atomic Energy Agency (IAEA) or European Atomic Energy Community (EURATOM). The concept involves inserting tiny neutron and gamma detectors into the guide tubes of a spent fuel assembly (SFA) and measuring the signals. The guide tubes form a quadrant symmetric pattern in the various PWR fuel product lines, and the neutron and gamma signals from these various locations are processed to obtain a unique signature for an undisturbed SFA. Signatures based on the neutron and gamma signals individually or in a combination can be developed. Removal of fuel pins from the SFA will cause the signatures to be visibly perturbed thus enabling the detection of diversion. All of the required signal processing to obtain signatures can be performed on standard laptop computers.Monte Carlo simulation studies and a set of controlled experiments with actual commercial PWR SFAs were performed, and they validated this novel methodology. Based on the simulation studies and benchmarking measurements, the methodology promises to be a powerful and practical way to detect partial defects that constitute 10% or more of the total active fuel pins. This far exceeds the IAEA goal that for SFAs that can be dismantled at the facility - which is essentially the case for most PWR fuel - the partial defect test used should assure that at least half the fuel pins are present in each SFA. The methodology does not rely on any operator-provided data like burnup or cooling time and does not require movement of the SFA from the storage rack in the spent-fuel pool.