ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Gregory A. Johnson
Nuclear Technology | Volume 175 | Number 2 | August 2011 | Pages 371-387
Technical Paper | Fission Reactors | doi.org/10.13182/NT11-A12310
Articles are hosted by Taylor and Francis Online.
A study was performed to examine power conversion system (PCS) options for the next generation nuclear plant, a very high temperature gas-cooled reactor. The purpose of the study was to provide insight into which PCS should be used and how should it be coupled to the reactor: direct or indirect. Seven PCSs were examined: direct helium Brayton, indirect helium Brayton, supercritical CO2 (SCCO2), cascaded SCCO2, combined-cycle gas turbine (CCGT), subcritical steam-Rankine, and supercritical steam-Rankine with double reheat. The results of the study show that the SCCO2 cycles are very promising and warrant further development, but the relative immaturity precludes it as a short-term option. Further, the results show a relative unattractiveness of the Brayton cycles when compared to the SCCO2 cycles. The best short-term options were the steam-Rankine cycles. The supercritical steam-Rankine cycle gave the best performance of the two. The CCGT was the most costly and provided little performance advantage over the supercritical steam-Rankine cycle. Issues associated with closed-loop operation, high-temperature compressor inlet temperature, and potential nitriding from the He/N2 working fluid cast uncertainty on the maturity of this cycle.