ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Kenneth Hoar, Piotr Nowinski, Vernon Hodge, James Cizdziel
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 351-359
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Environmental Effects of Nuclear Technology | doi.org/10.13182/NT11-A12307
Articles are hosted by Taylor and Francis Online.
Rock varnish samples were collected near three point sources of air pollution to determine if the varnish contained a record of recent air pollution. Samples were collected as follows: downwind of the Nevada Test Site (NTS); in the fallout pattern of the shuttered Mohave Power Plant, located in Laughlin, Nevada; and, near the operating Reid-Gardner Power Plant, just east of Las Vegas, Nevada. Analysis of the NTS rock varnish shows 240Pu/239Pu mass ratios as low as 0.0592 ± 0.0003 and 241Pu/239Pu ratios as low as 0.00063 ± 0.00004, compared to worldwide values of 0.18 ± 0.01 and 0.009 ± 0.002, respectively, clearly indicating that the varnish can be used as a forensic tool for identifying the source of air pollution, in this case the NTS. The samples collected in the plumes of the coal-fired power plants contain thorium and uranium, and have 232Th/238U mass ratios from 1 to 30, and concentrations from 5 to 755 ppm for Th and 1 to 578 ppm for U. The highest concentrations of these elements occur together at locations that implicate the power plants; however, additional samples would be required to demonstrate unequivocally that the power plants are the sources. Overall, it is apparent that rock varnish can be utilized as a passive monitor to investigate recent air pollution.